Katalon

Autonomous Software Testing Model

ABSTRACT

Recent work has shown a shifting paradigm from Test Au-
tomation to Autonomous Software Testing (AUST). While
Test Automation aims to automate the important tasks in a
software testing process, Autonomous Software Testing aims
to make the process as full control, decision making, and
operation by the machine. That has been made possible due
to the advances in the area of artificial intelligence (AI) and
machine learning (ML). In this paper, we propose a model
for assessing the autonomy of software testing approaches.
The model, namely Autonomous Software Testing Model
(ASTM), defines six levels ranging from fully manual (Level
0) to fully autonomous testing (Level 5). Using this model
as a basis, we evaluate the levels of autonomy of notable Al-
enabled test automation approaches proposed by the research
community and tools introduced by the software industry.
We show that these approaches and tools are today at a low
level of autonomy, which suggests opportunities for research
and practice towards higher levels of autonomy.

1 INTRODUCTION

Software testing plays an important role in ensuring the high
quality of a software product. Software testing validates if the
software is functioning appropriately and meeting require-
ments before it is released into production. To improve the
quality of software testing, several technologies have been in-
troduced in an automated software testing (AS'T) process. For
example, automatic test generation approaches [59, 61, 65|
help improve the process of generating the test cases for
the project under testing. Automated test optimization tech-
niques (12, 32| could help developers in optimizing the current
test suites with respect to different criteria and strategies.

The success of artificial intelligence (AI) and machine
learning (ML) has opened up several promising directions
for advances in software testing. AI and ML have been con-
tributing to making a transformative paradigm shift from
Test Automation to Autonomous Software Testing (AUST).
The idea of AUST is similar in spirit to Vehicle Autonomy
set forth by the Society of Automotive Engineers [17|. While
testing is a creative activity, parts of it are repetitive and
boring by nature — just like driving is. The repetitive daily
commute could be a recipe for mistakes, so repetitive ac-
tivities in testing could be overlooked, and various serious
defects could slip from us during our testing. Therefore, a
natural question is whether AI/ML can help push software
testing activities to become autonomous in a similar manner
as autonomous car driving.

To transition to full autonomy in software testing requires
a long process that involves the evolution of the hybrid and
combination of humans and Al-powered systems that would
enhance both human and machine capabilities. Eventually,
autonomous software testing tools will be able to take control
of test creation, maintenance, and execution processes. For

Page 10f 12

example, AUST will be able to learn from the performance
of the previous test suites and make decisions on how the
new test cases should be generated and prioritized to achieve
the best future performance in revealing software bugs even
when conditions and testing environments change.

The area of AI/ML over the years has successfully devel-
oped a wide range of general models, methods, and algorithms
that are highly efficient and effective for several application
domains. Researchers in software testing have adapted and
in many cases invented new techniques that leverage the
state-of-the-art AI/ML models in producing the important,
fundamental components toward a full software testing auton-
omy. The maturity of both AI/ML and software testing has
ogiven birth to the successes of several AUST approaches in
different phases of software testing including Test Planning,
Test Management, Test Maintenance, Test Generation, Test
Selection and Optimization, Test Monitoring, Test Execution,
and Test Evaluation and Report.

To advance the field of Autonomous Software Testing
(AUST), we propose the Autonomous Software Testing Model,
ASTM, that acts as a reference model for different Al-
powered AUST approaches and techniques. We are inspired
by the Autonomous Vehicle Model [17] that defines several
levels of autonomy in automotive.

The Autonomous Software Testing Model ASTM has a
basis on the Automation Theory [58] that classifies the inter-
action between human and machine ranging from a manual
process to a fully autonomous one. Specifically, we have in-
stantiated Ensley and Kaber’s Automation Model [23] to
propose our ASTM model for the domain of autonomous
software testing. ASTM has six different levels in which
the three lower levels are aimed for the human-controlled
processes and the three higher levels are for the machine-
controlled ones. The three human-controlled levels include 0)
Manual Testing (no automation), 1) Assisted Test Automa-
tion (machines support human in various actions), and 2)
Partial Test Automation (machines support human in making
decisions in testing activities). The three machine-controlled
levels include 3) Integrated Automated Testing (machines
generate a list of decisions and human may approve the op-
tion or select another one), 4) Intelligent Automated Testing
(machines generate options, select and carry out the option,
and human mainly monitors and intervenes if needed), and
5) Autonomous Testing (machine has a full control on the
testing process with intelligent decisions).

In ASTM, we also identify the Activity Areas pertaining
to software testing, including Test Planning, Test Generation,
Test Selection and Optimization, Test Execution, Test Main-
tenance, Test Kvaluation and Report, Test Monitoring, and
Test Management. For each of these activity areas, ASTM
defines the criteria for each of the six aforementioned levels.

We then perform an extensive survey on the state-of-the-
art Al-powered autonomous software testing approaches in

@ katalon.com

Katalon

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

both academia and the software testing industry. We group
them into different activity areas and use ASTM to assess the
autonomy levels for each aspect of an approach. To facilitate
the assessment, we introduce a visualization inspired by a
spider web to illustrate the different autonomy levels of a
software testing approach. From our survey, we also identity
the potential activity areas in autonomous software testing
that have not been explored in both academia and industry,
pointing to the potential research of leveraging AI/ML in
AUST. In this paper, we make the following contributions:

1. Autonomous Software Testing Model (ASTM): a refer-
ence model for the Al-powered autonomous software testing
approaches.

2. Extensive Survey on AI-powered AUST approaches. This
is the first extensive survey on the use of AI/ML in au-
tonomous software testing in both academia and industry.

3. Potential Novel AUST research directions. We also iden-
tify the potential directions for leveraging AI/ML in software
testing.

2 BACKGROUND ON AUTONOMOUS
THEORY

In the field of Automation Theory [23, 42, 45, 58], several
models have been proposed to classify the interaction between
human and machine ranging from a manual process to a fully
autonomous one. Various automation theory models have
different levels of automation. In general, all the models have
two sets of levels. In the first set of levels, the human plays the
controlling role, while the machine does that in the second
set. If we consider all the tasks in software testing ranging
from Test Planning to Test Evaluation and Report, we could
define the different levels of automation for each task. One
can map the existing approaches into each cell at each level
for the aforementioned tasks.

There exists several attempts from the software industry
to define autonomous testing models. For example, Gartner
proposes six levels of autonomy ranging from Manual Testing
(Level 0), Assisted Testing (Level 1), to Intelligent Automated
Testing (Level 4) and Autonomous Testing (Level 5) [28].
SmarBear describes six stages of test automation from manual
to autonomous testing [48]. Such models are primarily useful
for assessing at which levels test automation tools currently
are and for providing directions for future tool offerings.

3 AUTONOMOUS SOFTWARE TESTING
MODEL

3.1 Important Concepts

This section provides the details of our proposed Autonomous
Software Testing Model (ASTM). ASTM is based on the
following key concepts.

DEFINITION 1. [Action| Action is an atomic step that can
be carried out by human or computer in the software testing
PTOCESS.

DEFINITION 2. [Activity| Activity is a task that consists a
number of actions carried out to achieve a specified objective.

Page 2 of 12

DEFINITION 3. [Decision| A decision is a resolution that
s made on one or multiple actions and/or activities in the
software testing process. The decision can be made by human
or computer.

DEFINITION 4. [Activity Area] Activity area is a phase
in the software testing process. Each activity area consists
of several related activities in the phase. For each activity,
several decisions and actions will be made and performed by
either human or computer.

Taking test generation as an example, it is an important
phase in the software testing process. According to our defi-
nitions above, test generation is an activity area that consists
of the concrete testing activities including test-case design,
test data generation, and test script generation. When design-
ing test cases, the human or the computer performs actions
that include, for example, generating test cases for different
types of test and environments, or creating test assertions and
oracles. In each action, they also make several decisions on
the priority of software requirements for which test cases are
generated, how many tests is created for each requirement,
how many test cases are needed for each type of testing and
environment, how much detailed a test case is, or whether a
test case is made for automated or manual testing.

DEFINITION 5. |Level of Autonomy| The level of autonomy
indicates the ability of the computer to make decisions and/or

perform actions autonomously without human intervention
during the software testing process.

We define our autonomous software testing model via the
levels of autonomy with respect to different activity areas.
The levels are defined according to the following principles:

a. T'he higher level has a higher degree of autonomy.

b. In the three lower levels (Levels 0-2), the human

plays the control role, while in the three upper levels
(Levels 3-5), the machine plays the control role.

. The lowest level is manual testing, which has no

automated support, while the highest level is au-
tonomous testing, which has no human intervention.
. At the higher levels, the autonomy is with respect
more to decisions than to actions.
. At the higher levels, the autonomy involves more
intelligent decision-making solutions.

Table 1 presents the six levels ot the autonomous software
testing model. From Level 0 to Level 1, the key difference is at
the automated tool supports for certain testing actions, but
not the decision support. The assistance for test automation
can be for different actions in software testing, including
providing the facilities in GUI to help a tester perform actions
easily, such as changing the execution order of test cases,
selecting test cases to run, and creating test cases according
to record-and-playback mechanism, etc. These actions in the
testing activities are disconnected but assist the human in
making the decisions on his/her tasks for the system under

testing (SUT).

® katalon.com

Katalon

Autonomous Software Testing Model ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

Table 1: Autonomous Software Testing Model

Level Title Description
0 Manual testing The human performs all activities and actions and makes all decisions concerning testing of
the SUT.
1 Assisted Test Automa- The human performs most actions for testing the SUT with the support of the computer,
tion e.g., automated software tools. The computer carries out certain testing actions automatically
under the human’s control. The human holds a main role and makes all testing decisions.
2 Partial Test Automa- Both the human and the computer perform testing actions and generate possible decision
tion options, but the human still makes most testing decisions. The computer carries out testing
actions based on the decisions made by the human.
3 Integrated Automated The computer generates a list of decision options, selects an option, and performs actions
Testing based on this option if the human approves. The human can also select another decision
option for the computer to carry out.
4 Intelligent Automated 'The computer generates decision options, determines the best option, and performs testing
Testing actions according to this option. The human can still intervene if necessary.
5 Autonomous Testing The computer has full control of the testing process for the SUT, including making decisions

and carrying out all testing actions. The human cannot intervene.

Compared with Level 1, the computer at Level 2 starts
to shift from the action aspect to the decision aspect. The
computer can provide the analytic information about the test
case, the code changes, the configurations, and the bugginess
of the current code, to help human make the decision.

From Level 2 to Level 3, the key advance of Level 3 is the
shared control in decision-making between two sides. The
computer generates a list of decision options such as which
environments to test, which types of test to perform, and
how much to test, however, human may approve the option
or select another one.

Compared with Level 3, the computer at Level 4 1s more
intelligent in making the decision with respect to the testing
activities at hand. The computer is able to determine the
best decision option. Despite its high intelligence, the control
can still be overridden by the human if needed.

When reaching Level 5, the computer can perform testing
completely automatically without human supervision.

At a high level of autonomy, AI approaches are applied to
perform autonomous and intelligent actions and decisions, for
example, about test evaluation and report, such as building
test oracles, defect reports, and allocation.

We will present the level descriptions ot the activity areas
and the examples in the next section.

3.2 Activity Areas

The software testing process consists of a wide range of
activities, from planning and designing tests to execution and
evaluation [44] [27]. We define the concept of the activity area,
which consists of several activities, as a means to access the
level of autonomy for a given testing tool or solution. Each
activity is then assessed based on its actions and decisions.
The testing process includes the activity areas shown in
Table 2. Fach activity can be an approach to solving the
overall problem of the activity to which it belongs, or it can
be a partial solution to the overall problem. Note that these
activities are not always present during testing, depending
on the software project under test, only some activities are

Page 3 of 12

executed. Furthermore, these activities are subject to change
over time. Old activities can be adjusted or removed, new
activities can be added to match the development trend of
technology.

Let us provide the details of the autonomy level defini-
tions of the activity areas in software testing. Due to space
limitations, we present only three activity areas, including
test generation, test optimization, and test maintenance. The
level descriptions of those three activity areas are presented
in Table 3.

In those three activity areas, we choose the Test Optimiza-
tion area to further clarify its three activities, including test
case prioritization, test case selection, and test suite min-
imization. In Table 4, we present the level descriptions of
the three activities included in the Test Optimization area.
The level descriptions of these activities form the basis for
evaluating academic approaches and industry tools, which
will be presented in Section 4.

4 SURVEYS

4.1 Academic approaches

An study has been done to show the usefulness of using ASTM
in identifying the level of autonomy in the current research
literature. We selected between 10 and 15 publications on a
whole range of autonomy spectrum levels for each activity.
The selected works are classified into different levels as the
representative candidates based on the definition of ASTM
in Section 3 to give the readers a sense of how different
automation levels are.

Several vital criteria are considered when selecting pub-
lications for evaluations, including recent state-of-the-art
methodologies, number of citations, previously mentioned
times in other related papers, and publication date (in the
descending order of prioritization).

The evaluation results are summarized in Table 5. We will
further analyze and discuss them in detail in the following
sections.

@ katalon.com

Katalon

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

Table 2: Activity areas in software testing defined for the Autonomous Software Testing Model

Description

Test management is concerned with planning, control, and completion of test activities
ISO/IEC/IEEE 29119|. Test planning includes defining the scope of testing, test environments,
and strategies; estimating the effort required to perform testing and resources (people,
hardware, software, and tools) needed; assigning the resources to the tasks and scheduling;
and assessing and managing risks.

Test generation is the phase focusing on test-case design, test data generation, and test script
generation. Test suites, which consist of test cases in a certain order to be executed, are also
created in this activity area.

Test optimization focuses on making testing activities more effective and efficient given certain
situations, environments, and resources. This activity area includes activities such as test
suite minimization (reducing execution time, resources, etc.), test case selection (choosing
relevant test cases, data, and scripts based on certain criteria), and test case prioritization
(ranking test cases based on certain criteria).

Test maintenance is the activity area concerned with repairing tests (test cases, data, and
scripts) so that they can still be valid when the SUT is changed. Activities include detecting
the fragile components, fixing broken tests, and making tests more resilient to changes.
This test area is concerned with determining which tests to be performed on which test
environments using which resources, defining and carrying out sequences of automated test
activities. At a high level of autonomy, test orchestration involves the synchronization of
making decisions and performing actions across activity areas.

Test monitoring is concerned with collecting, measuring, and analyzing data, evaluating
testing results against pre-specified objectives, and providing teedback on the current progress
of software testing activities.

Test execution involves running the SUT using the test cases and recording the results. In
manual testing, testers exercise the test cases on the SUT, observe, and record its results. In
automated testing, test scripts along with test data are executed automatically.

Test Evaluation and | This activity area includes main activities such as evaluating, analyzing, and reporting test
Report results. These activities involve evaluating test verdicts, analyzing the root cause of failures
and areas of vulnerabilities, visualizing test results and analytics, and reporting test verdicts
and defects.

Activity areas
Test Management

Test (Generation

Test Optimization

Test Maintenance

Test Orchestration

Test Monitoring

Test Execution

testing tools based on their popularity and user benchmark.
Our insight suggests that almost all testing tools nowadays
support at least Level 0 - manual testing for main testing

Our observation also revealed that (1) there is a significant
dependency on the number of publications of each activity
area. For example, topics about test generation, seli-healing,

test prioritization, and test execution usually gain lots of
attention in the research community, while other activity
areas such as planning, orchestration, and monitoring are still
in the early stage of the research. (2) the autonomous levels
of proposed methods are mostly between Level 2 and Level
3 in our ATSM model, except these research works about
planning, orchestration, and management usually achieve
levels 0 to 1 due to high complexity and involve lots of
human intervention, (3) a large number of scientific works
are also proposed to make the interaction between humans
and machines efficient and productive, ranging from test
monitoring to test evaluation, and test reporting, which also
shows promising directions for making essential building
blocks toward building a fully functional autonomous testing
system.

4.2 Industrial tools

To demonstrate the practical usability of the ASTM in eval-
uating industrial tools, we select representative automated

Page 4 of 12

activity areas as explained in Section 3; therefore, in order
to make a clear and concise comparison, tools that have
all main activities belong to Level 1 or above are remained
(excepts Test Planning, which the human usually takes main
responsibility), and the rest of tools are filtered out. Finally,
we come up with a list of ten representative testing tools
covered by multiple aspects.

Since each main activity area may contain several activi-
ties and a tool usually targets a few key activities, we assess
each activity’s autonomy level based on the maximum per-
formance level of all activities it has. It is worth mentioning
that, within an activity, the autonomy level of each activity
may be dissimilar; for example: in the context of test gener-
ation, a tool may have a good capacity for generating test
scripts while performing poorly on generating test data, or
for test maintenance, a tool may have an excellent ability on
identitying UI changes, but at the same time lack of power
for repairing test cases. Using the maximum level of activities
for the assertion may lead to activities dominating an entire

@ katalon.com

Katalon

Autonomous Software Testing Model

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

Table 3: Level descriptions of three activity areas with respect to the Autonomous Software Testing Model

Level Test Generation Test Optimization Test Maintenance

0 - Manually | The human generates test fully | The human performs test opti- | The human maintains test cases
Testing manually. mization fully manually. fully manually.

1 - Assisted | The computer can assist the hu- | The computer can provide GUIs | The computer provides tacilities

Test Automa-
tion

2 - Partial Test
Automation

man in performing Actionss by
providing facilities, such as user
interfaces and functionalities, for
test generation.

The computer provides human in-
formation related to test cases
and source code, information
about the parts of code that are
modified, added, or removed to
help people make Decisions to
generate tests appropriately. The
human relies on that information
to decide which area they need to
generate tests. Implementation is
done by the computer.

to help users perform Actionss re-
lated to test optimization more
easily.

The computer assists the human
in performing optimization by
providing analytic test informa-
tion such as coverage information,
execution history, test case length,
etc. The human relies on that in-
formation and their objectives to
design the strategy to optimize
tests. The computer performs test
optimization based on a human-
chosen strategy.

for the human to maintain tests
more easily.

The computer finds the difference
between an old and updated ver-
sion and shows the analytic infor-
mation for the human. The hu-
man relies on that information to
determine which and how tests
should be maintained.

3 - Integrated
Automated
Testing

4 - Intelligent

The computer generates the list
of generated strategies for the hu-
man to select. The human de-
cides the strategy to generate
tests. The computer will automat-
ically generate tests according to
the strategy chosen by the human.
Manual tests could be added to
the test suite.

The computer automatically gen-

The computer generates a list of
optimization strategies for the hu-
man to select. The human de-
cides which strategy should be
used. After the computer per-
forms the Actions belonging to
the selected strategy, the human
can make some adjustments to
the test suite.

The computer has the ability to

The computer will analyze and
recommend the list of tests that
need to be maintained. The hu-
man decide which tests should be
maintained from the generated
list or can choose others. The com-
puter follows the human Decisions
to perform the maintenance of the
corresponding tests.

The computer can determine

Automated erates tests based on the strat- | analyze and choose the best strat- | which test should be maintained
Testing egy that is the best for SUT.| egy for optimizing test cases. Hu- | and automatically implement the
The computer needs human val- | man validation is still needed. | maintenance. The human can add
idation to improve recommenda- | The computer has the capability | some adjustments to tests that
tions. The computer has the capa- | to learn to improve performance | The computer missed. The com-
bility to learn to improve perfor- | through human validation. puter has the capability to learn
mance through human validation. to improve performance through
human validation.
5 - Au- | The computer generates and op- | The computer optimizes the tests | The computer can identity all
tonomous timizes tests fully automatically, | fully automatically, the tests are | the tests that need to be main-
Testing which is the highest benefit for | optimized in the way that is most | tained and fully automatically im-

the SUT.

beneficial to the SUT.

plement reparation.

particular testing activity, and evaluation relies solely on
it, resulting in over-classification when evaluating a specific
tool/application. However, for the purpose of illustrating
the current landscape of Al-powered autonomous software

testing tools, it has no significant effect.

A brief summarization and level classification for each
selected tool are described below and in Table 6, respectively.

(1) Functionize |25 is a cloud-based automated testing tool.
It achieves Level 2 for test generation (as it employs
plain English and NLP to quickly generate test cases),
Level 2 for test maintenance (it can detect Ul changes

and test failures seamlessly).

Page 5 of 12

(2) TestCraft [11] is an Al-powered test automation plat-
form built on top of Selenium for regression, continuous
testing web application monitoring. It achieves Level
2 for test maintenance (ML is used to identify web
elements correctly even when a web application change
happens), Level 2 for test generation (its on-the-fly
mode enables the creation of test models out of the
test scenario, making it easier to reuse test steps).

Applitools [1] is a visual Ul testing and monitoring soft-
ware. It achieves Level 1 for test maintenance (its com-
parison algorithm can recognize whether the changes

(3)

@ katalon.com

Katalon

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

Table 4: Level descriptions of three activities in Test optimization

Test Automa-
tion

2 - Partial Test
Automation

Actions: The computer provides
functionality that allows the user
to change the execution order of
the test cases contained in the test
suite.

Decisions: The computer supports
people to make Decisions by pro-
viding the analytic information ot
test cases(test case coverage, ex-
ecution history of test cases, the
change of codes,...). This informa-
tion will be the reference base for
humans to decide the order of test
cases.

Actions: Similar to the Actions of

Level 1

Actions: The computer provides
facilities for the human to select
tests. The human can select some
test cases included in test suite,
and ask the computer to execute
only those test cases.

Decisions: The computer assists
the human in making Decisions
by supplying test case analytic in-
formation (test case coverage, ex-
ecution history of test cases, the
change of codes, etc.). The hu-
man bases on that information
and their goal to decide which test
cases should be selected.

Actions: Similar to the Actions of

Level 1

Level Test Case Prioritization Test Case Selection Test Suite Minimization

0 - Manually | The human fully decides the order | The human selects test cases man- | The human performs test opti-
Testing test case. ually. mization fully manually.

1 - Assisted | Decisions: None Decisions: None Decisions: None

Actions: The computer provides a
interface to remove or modify the
test cases contained in the test
suite easily.

Decisions: The computer supports
people in making Decisions by
providing the analytic informa-
tion of test cases (test case cov-
erage, execution history of test
cases, the change of codes, etc.).
The human relies on that informa-
tion and their objective to mini-
mize the test suite.

Actions: Similar to the Actions of

Level 1

3 - Integrated
Automated
Testing

Decisions: The computer gener-
ates a list of prioritization strate-
gies and recommends a strategy
for implementation. Humans can
agree to the machine’s sugges-
tions or choose a different strat-
egy.

Actions: The computer prioritizes
test cases according to the strat-
egy that the human has chosen.
The human can make some adjust-
ments to the order of test cases
through the facility that the com-
puter provides.

Decisions: The computer gener-
ates a list of selection strate-
gies and recommends a strategy
for implementation. Humans can
agree to the machine’s sugges-
tions or choose a different strat-
egy.

Actions: The computer, based on
the strategy, will choose suitable
test cases and provide facilities
for the human to add or remove
some test cases to be suitable for
their goals.

Decisions: T'he computer generates
the list of minimization strate-
gies and recommends a strategy
for implementation. Humans can
agree to the machine’s sugges-
tions or choose a different strat-
egy.

Actions: The computer is based
on the chosen strategy to mini-
mize the test suite. The human
can modify the test suite through
the facility that the computer pro-
vided.

4 - Intelligent
Automated

Testing

5 - Au-
tonomous

Testing

Decisions: The computer can gen-
erate a list of strategies and de-
cide which strategy is used to pri-
oritize test cases.

Actions: The computer ranks test
cases according to the strategy
that it has chosen. Human vali-
dation is still needed. The com-
puter has the capability to learn
to improve performance through
human validation.

The computer ranks the test cases
fully automatically, the test cases

are arranged in the order that is
most beneficial to the SUT.

Decisions: The computer can gen-
erate a list of strategies and de-
cide which strategy is used to se-
lect test cases.

Actions: The computer selects test
cases according to the strategy
that it has chosen. Human vali-
dation is still needed. The com-
puter has the capability to learn
to improve performance through
human validation.

The computer selects the test
cases fully automatically. The se-
lected test suite contains test
cases that are in the best inter-

est of SUT.

Decisions: The computer can gen-
erate a list of strategies and de-
cide which strategy is used to min-
imize tests.

Actions: The computer minimizes
tests according to the strategy
that it has chosen. Human vali-
dation is still needed. The com-
puter has the capability to learn
to improve performance through
human validation.

The computer performs the mini-
mization fully automatically and
brings efficiency to SUT.

Page 6 of 12

@ katalon.com

Katalon

Autonomous Software Testing Model ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

Table 5: A classification of autonomous levels for each activity in the current scientific approaches

Autonomous Levels

Testing Activities

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5
Test Management 15] 64
Test Orchestration 26 43],[21],[5]
Test Maintenance 119],[18] 150],[16],{20],[30],[38]
Test Generation 461, [56],[13] [62],[9],(2],[39],63],(3],[31]
Test Optimization 491,(8],122],[7],[41]
Test Monitoring 1371,114],(47],(29]
Test Execution 135]14/(401[60]|51]|36]
Test Evaluation & Report 661(33][10]

are meaningful or just bugs), and Level 2 for test mon-
itoring (it can find visual bugs in apps and make sure
that no visual elements are overlapping and invisible).
Testim [55] is an end-to-end Al testing tool that focuses
on functional testing and UI testing. It achieves Level
2 for test maintenance (it can detect the changes in the
app to run automatic tests), Level 2 for test report (this
tool integrates seamlessly with CI/CD tools, provides
detailed bug reports and performs root-cause analysis
of the failed tests for quick remedial action).

Mabl [53] is an unified platform that creates and runs
automated functional Ul tests. It achieves Level 3 for
test execution (it can fully manage testing infrastruc-
tures in the cloud, scale tests infinitely and run them
all in parallel), Level 3 for test maintenance (it can
automatically detect whether elements of applications
have changed, and dynamically updates the tests to
compensate for those changes), Level 4 for test report
(it can continuously compare test results to test history
to quickly detect changes and regressions, resulting in
more stable releases), Level 2 for test monitoring (it
can help identity and surface problems quickly, alerting
you to possible impacts before they impact customers).
Tricentis Tosca [57| powered by Vision Al and model-
based test automation to deliver test automation. It
achieves Level 3 for test generation (it can automat-
ically recognize and identify user interfaces elements
and controls across any form factor the same way hu-
mans do to aid in the automated generation of robust
test cases), Level 3 for test optimization (its Risk-Al
feature can automatically detect most at risk objects
and select the right set of tests to minimize business
and technical impact of code changes), Level 3 for test
maintenance (its self-healing Al feature can automati-
cally adapt test cases as applications evolve with each
iteration).

UiPath Test Suite [52] is a tightly integrated bundle
of tools. It achieves Leve 1 3 for test orchestration (it
can deploy and manage an entire workforce, handling
all the critical enterprise duties: release management,
centralized logging, reporting, auditing and monitoring,
remote control, scheduling, workload management, and
asset management), Level 2 for test execution (it has

(8)

(10)

Page 7 of 12

capabilities on multiple machines, distributed across
teams and through job scheduling makes the execution
process autonomous and straightforward).
AutonomIQ [6] is an Al-driven, autonomous platform.
[t achieves Level 3 for test generation (it can generate
automation scripts automatically in plain English, and
ensure compliance with all regulatory requirements
and eliminate security risk using Al-generated syn-
thetic data for all automation needs), Level 3 for test
maintenance (it can maintain quality throughout the
application lifecycle with autonomous discovery, au-
tonomous healing capability, deliver flawless updates,
and up-to-date tracking of changes), Level 4 for test
execution (it runs multiple tests in parallel, determine
test frequency, keep pace with browser updates and
executions across operating systems and platforms).
Test.Al [54| is an automation framework built on top of
Selenium and Appium that puts humans in control of
bots. It achieves Level 3 for test generation (it allows
human to control a running AI-Bot as it navigates
web application, and build tests in real-time), Level 2
for test execution (it can support a massive scale of
thousands of VMs, and thousands of applications in a
single run), Level 3 for test maintenance (it can adjust
and identify UI changes), Level 3 for test report (as it
can provide test flow results, full analytics and reports
for each test case).

Katalon Studio (34| is a testing platform for web, API,
mobile, and desktop applications. It achieves Level 2
for test generation (with advanced record playback
mechanism), Level 3 for test execution (it can execute
tests on all OSs, browsers, and devices, operate on
both cloud and on-premise infrastructures, support
parallel and sequential executions), Level 3 for test
maintenance (automatically locates the web or app
elements when the AUT get updated), Level 3 for
test orchestration (it can orchestrate tests smartly to
improve test quality, maximize test coverage, and save
maintenance costs), and Level 1 for reporting (it can
generate comprehensive reports and analytics).

@ katalon.com

Katalon

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

Table 6: A classification of autonomous levels for each activity in the current popular industry testing tools

Testing Activities

Autonomous Levels

Level O Level 1 Level 2 Level 3 Level 4 Level 5
Test Management Functionize,
TestCraft, Appli-
tools, Testim, Mabl,
‘Iricentis Tosca,
UiPath Test Suite,
AutonomlI(@), Test.Al,
Katalon Studio
Test Orchestration Functionize, Mabl Katalon Studio,
TestCraft, Applitools, UiPath Test Suite
Testim, Tricentis
Tosca
Test Maintainance Applitools Functionize, Tricentis Tosca, Mabl,
TestCraft, UiPath Test Suite,
Testim AutonomlIQ, Test.Al,
Katalon Studio
Test Generation TestCraft, Applitools, Tricentis Tosca, Au-
Testim, Mabl, UiPath tonomlI(Q), Test.Al
Test Suite, Function-
ize, Katalon Studio
Test Optimization Functionize, Tricentis Tosca
TestCralft, Appli-

tools, Testim, Mabl,
UiPath Test Suite,
AutonomlI@, Test.Al,
Katalon Studio

Test Monitoring

Mabl, Applitools

Functionize,
TestCraft, Tes-

tim, Iricentis Tosca,
UiPath Test Suite,
AutonomlI(Q), Katalon
Studio, Test.Al

Test Execution

TestCraft, Function-
ize, Applitools, Tes-
tim, Tricentis Tosca

UiPath
Test. Al

Test Suite,

Mabl, Katalon Stu-
dio, AutonomIQ)

Test Evaluation & Report

TestCraft, Applitools,
‘Iricentis 'losca,
Katalon Studio,
AutonomlI(Q), UiPath
Test Suite,
Functionize

Testim

Mabl, Test.Al

5 DISCUSSIONS

The overview results in Section 4.1 show many gaps in the
current research landscape of software testing. Careful inves-
tigations can benefit researchers in finding out the subsequent
directions to target concerning the automated software testing
process. This section’s goal is to outline further the activities
that are most commonly studied and gained lots of attention
in the research community. There are three key points that
we have learned from our evaluation.

e We found that a large portion of research works have
been proposed and developed mainly for test script

Page 8 of 12

generation, self-healing mechanism, test case prioritiza-

tion, test execution with CI/C]

D tools, and Al-driven

monitoring. These are well-defined problems, have a
long development history, and can be integrated seam-
lessly into the existing system, with high demand from
clients/customers. The reasons mentioned above have
created more opportunities for research than the other
activities in the same area.
e On the flip side, several activities remain untouched
and not yet explored extensively, including test strat-
egy planning, resource planning, automation reporting,

@ katalon.com

Katalon

Autonomous Software Testing Model

TEX

TEX

TMN —— Applitools TMN —— AutonomiQ
-
TRE TOR
TMA TEX TMA

TMO TGR

TOP TOP

(a) (b)
TMN —— Test.Al TMN —— Mabl

TMA TEX TMA

TOP TOP

(e) ()

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

TMN — Functionize TMN —— Katalon-Studio
5

TRE TOR TRE TOR

TEX TMA TEX TMA

TMO TGR TMO TGR

TMN —— TestCraft TMN ——— Tricentis-Tosca

TRE TOR

TEX TMA TEX TMA

T™MO TGR

TOP

(8) (h)

Figure 1: Industrial AI-powered software testing tools across activity areas: Testing Management (TMN), Test Orchestration
(TOR), Test Maintenance (TMA), Test Generation (TGR), Test Optimization (TOP), Test Monitoring (TMO), Test Execution
(TEX), and Test Evaluation and Report (TRE)

data generation, and orchestration. These activities
are considered changing issues because they usually
involve lots of human decisions and hardly be replaced
by the computer at all. However, if computers can
completely handle these activities, it would be a great
stride toward building a fully autonomous software
testing system.

Current academic works mainly focus on automated
testing rather than autonomous testing. The automated
testing targets supporting primitive actions for humans,
maximizing intra-activity performance. In contrast, au-
tonomous testing aims to provide more intelligent deci-
sions for humans to select, maximizing both intra- and
inter-activities performance. These approaches in the
first category mainly try to improve their capacities on
a single-specific objective while paying little attention
to other activity areas, making them less applicable,
even infeasible, when integrating these solutions into
the existing systems. Future research should pay more
attention to autonomous testing, the overall software
testing landscape, and the inter-activities relationship
to benefit the testing process.

Section 4.2 also presents another interesting story, that the
intelligence features in the current industrial tools are applied
widely, although they are still quite primitive. These features
usually lie in Levels 2 and 3 of the ASTM model. One can
easily notice the similarity between academic approaches and
industrial tools regarding which activities are most concerned
about. The advancements in software engineering, natural
language processing, computer vision, and the ability to

Page 9 of 12

extend its functionality by using third-party platforms can
enhance the human-like decision-making capability in some
primary activities. However, the autonomous levels of the
features are still far from perfection (Level 5).

e To the best of our knowledge, a fully autonomous end-
to-end testing system (or for particular testing activity)
without human guidance and intervention is still not
developed completely. Human-in-the-loop is still a safe,
reliable option and is frequently adopted in the current
testing tools.

e The current industrial tools still play the role of sup-
porting humans in decision-making. Popular automated
testing tools like Test.Al, Functionize, and Katalon Stu-
dio, usually achieve Level 1 in the ATSM model for
primary activities such as test execution, optimization,
and evaluation by providing humans with necessary
user interfaces and utilities for making the final deci-
sion. Other activities may obtain higher autonomy as
test generation (Level 2) or test maintenance (Level
3). However, no tools in our survey can completely
automate these activities without human guidance.

e Our previous brief review reveals the considerable po-
tential and the need for future research and devel-
opment in the following testing activities: planning,
evaluation, and orchestration. At the moment, tools
only achieve Level 0-2 in the ASTM model, which
means humans need to rely mainly on their expertise
and other management platforms such as Jira, Klaros,
or TestCollab to complete these activities, making the
testing process disconnected, interrupted, and prone to

@ katalon.com

Katalon

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

error. Bringing up to a higher level of autonomy would
benefit the whole testing process in a significant way.

6 RELATED AUTONOMOUS TESTING
MODELS

Being inspired by the Autonomous Vehicle Model [17], several
autonomous testing models have been proposed for assessing
the level of automation and autonomy of software testing
tools. Gartner introduced an autonomous model consisting
of six levels of autonomy, namely Manual Testing (Level
0), Assisted Testing (Level 1), Partially Automated Testing
(Level 2), Integrated Automated Testing (Level 3), Intelli-
gent Automated Testing (Level 4), and Autonomous Testing
(Level 5) [28]|. However, this model lacks a concrete frame-
work for accessing the level of autonomy of given testing tools.
Based on this model, Functionize also defined a five-level au-
tonomous testing model along with an assessment framework
24]. Still, this assessment framework covers only three main
activities of test automation, which are test creation, test
execution and analysis, and test maintenance.

Similarly, Smartbear presented a model that consists of
six stages from manual to autonomous testing and used this
model as a reference to assess the level of automation and
autonomy of their test automation tool [48].

Unlike these approaches, our model offers a concrete frame-
work for accessing the level of autonomy for a given testing
tool and approach. It is based on the core principles and
concepts of action, decision, activity, and activity area.

7 CONCLUSION AND LESSONS LEARNED

Software testing has made a great stride in recent years, shift-
ing from automated testing tools to a more autonomy testing
framework. Autonomous Software Testing is characterized by
full and intelligent control of the computer in operations and
decision-making. This paradigm shift has been made possible
due to the advances in the area of artificial intelligence (AI)
and machine learning (ML).

In this paper, we present the Autonomous Software Testing
Model (ASTM) that defines six levels of autonomy ranging
from complete manual (Level 0) to full autonomous testing
(Level 5). We have demonstrated our ASTM model via a
variety of software testing activities. We have conducted an
extensive survey on the levels of autonomy of notable Al-
enabled test automation approaches proposed by the research
community and tools introduced by the software industry.

We have reported the lessons learned from the state-of-
the-art automated and autonomous testing approaches and
suggested opportunities for research and practice towards
higher levels of autonomy. Specifically, we reported

1. A large portion of research works are still focusing much
on automated software testing including test orchestration,
test maintenance, test generation, and test optimization.

2. Future research should pay more attention to advancing
the field toward autonomous software testing, including test
monitoring and test evaluation and report.

Page 10 of 12

3. The state-of-the-art software testing tools in the industry
are reaching Level 3. The focus of those industrial tools spans
a wider range from testing orchestration, test maintenance,
test generation, test monitoring, and test execution.

4. An autonomous end-to-end testing system (or for par-
ticular testing activity) without human guidance and inter-
vention is still in future works. However, the approaches
and tools have started moving toward supporting humans
in decision-making instead of only supporting automated
testing activities.

To sum up, not all testing activities have the same poten-
tial for automation, and we are still far from having a fully
autonomous testing system. But understanding the current
level of each testing activity, what components it has cov-
ered, what components are still missing, and how far from
the current level to the pertection level are crucial steps for
both practitioners and researchers. We can have a clear vi-
sion and detailed roadmap toward building such futuristic
systems based on this information. In addition, given that hu-
mans may perform better than computers in some activities
that require planning, intuition, and judgment, a promising
direction for future research and development would be in-
corporate decision-making between humans and machines to
take the best of both worlds.

REFERENCES

(1] Applitools. 2022. Automated Visual Testing. https://applitools.
com/. Accessed: 2022-07-05.

2] Italo L Aratjo, Ismayle S Santos, Joao B Ferreira Filho,
Rossana MC Andrade, and Pedro Santos Neto. 2017. Gener-
ating test cases and procedures from use cases in dynamic soft-
ware product lines. In Proceedings of the Symposium on Applied
Computing. 1296—-1301.

3] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014.
Automated unit test generation for classes with environment de-
pendencies. In Proceedings of the 29th ACM/IEEFE international
conference on Automated software engineering. 79—-90.

[4] Cristian Augusto. 2020. Efficient test execution in End to End
testing: Resource optimization in kEnd to End testing through a
smart resource characterization and orchestration. In Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering: Companion Proceedings. 152—154.

[5] Cristian Augusto, Jestis Mordan, Antonia Bertolino, Claudio de la
Riva, and Javier Tuya. 2019. RETORCH: Resource-aware end-to-
end test orchestration. In International Conference on the Qual-
ity of Information and Communications Technology. Springer,
297-310.

6] Autonomiq.io. 2022. A Leading Provider Of Scriptless Test Au-
tomation Solutions. https://autonomiq.io/. Accessed: 2022-07-05.

7] Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel Briand. 2021.
Reinforcement learning for test case prioritization. IEEE Trans-
acttons on Software Engineering (2021).

8] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto
Pietrantuono, and Stefano Russo. 2020. Learning-to-rank vs
ranking-to-learn: Strategies for regression testing in continuous
integration. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 1-12.

9] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella.
2019. Diversity-based web test generation. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering. 142—153.

110] Tim Blazytko, Moritz Schlogel, Cornelius Aschermann, Ali Abbasi,
Joel Frank, Simon Worner, and Thorsten Holz. 2020. {AURORA }:
Statistical Crash Analysis for Automated Root Cause Explanation.
In 29th USENIX Security Symposium (USENIX Security 20).
235-252.

@ katalon.com

Katalon

Autonomous Software Testing Model

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]
[25]

[26]

[27]

28]

[29]

[30]

[31]

Perfecto by Perforce. 2022. Introducing TestCraft for Codeless,
Automated Testing | by Perforce. https://www.perfecto.io/blog/
introducing-testcraft. Accessed: 2022-07-05.

Gaocheng Cai, Qinghua Su, and Zhongbo Hu. 2021. Automated
test case generation for path coverage by using grey prediction
evolution algorithm with improved scatter search strategy. Engi-
neering Applications of Artificial Intelligence 106 (2021), 104454.
https://doi.org/10.1016/j.engappai.2021.104454

José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu.
2014. Continuous test generation: enhancing continuous integra-
tion with automated test generation. In Proceedings of the 29th
ACM/IEFEFE international conference on Automated software
engineering. 55—66.

Jeanderson Candido, Mauricio Aniche, and Arie van Deursen.
2019. Contemporary software monitoring: A systematic literature
review. arXiv e-prints (2019), arXiv—-1912.

Thomas J Cheatham, Jungsoon P Yoo, and Nancy J Wahl. 1995.
Software testing: a machine learning experiment. In Proceedings
of the 1995 ACM 23rd annual conference on Computer science.
135-141.

Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessan-
dro Orso. 2011. Water: Web application test repair. In Proceedings
of the First International Workshop on End-to-End Test Script
Engineering. 24—29.

SAE On-Road Automated Vehicle Standards Committee et al.
2018. Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles. SAFE Interna-
ttonal: Warrendale, PA, USA.

Brett Daniel, Tihomir Gvero, and Darko Marinov. 2010. On
test repair using symbolic execution. In Proceedings of the 19th
international symposium on Software testing and analysis. 207—
218.

Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov.
2009. ReAssert: Suggesting repairs for broken unit tests. In 2009
IEEE/ACM International Conference on Automated Software
Engineering. lEER, 433-444.

Brett Daniel, Qingzhou Luo, Mehdi Mirzaaghaei, Danny Dig,
Darko Marinov, and Mauro Pezze. 2011. Automated GUI refac-
toring and test script repair. In Proceedings of the First In-
ternational Workshop on End-to-End Test Script Engineering.
38-41.

Hitham Haidar Deyab and Rodziah Binti Atan. 2015. Orchestra-
tion framework for automated Ajax-based web application testing.
In 2015 9th Malaysian Software Engineering Conference (My-
SEC). IEEE, 1-6.

Jackson Antonio do Prado Lima and Silvia Regina Vergilio. 2020.
A multi-armed bandit approach for test case prioritization in
continuous integration environments. [IEFEE Transactions on
Software Engineering (2020).

MICA R. ENDSLEY and DAVID B. KABER. 1999. Level of
automation effects on performance, situation awareness and work-
load in a dynamic control task. Ergonomaics 42, 3, 462-492.
https://doi.org/10.1080/001401399185595

Functionize. 2021. 5 Lewels of Test Automation. https://www.
functionize.com/resources/5-levels-of-test-automation
Functionize.com. 2022. Agile Automation Testing Framework with
Machine Learning | Functionize. https://www.functionize.com/.
Accessed: 2022-07-05.

Sushant G Gaikwad and MA Shah. 2015. Pipeline Orchestration
for Test Automation using Extended Buildbot Architecture. In-
ternational Journal of Computer Applications 975 (2015), 8887.
Vahid Garousi and Frank Elberzhager. 2017. Test automation:
not just for test execution. IFFEE Software 34, 2 (2017), 90—96.
Gartner. 2020. Innovation Insight for Autonomous Testing.
https://www.gartner.com/en/documents/3992325/innovation-
insight-for-autonomous-testing

Madhwaraj Kango Gopal, M Govindaraj, Paramita Chandra,
Prathiksha Shetty, and Sunny Raj. 2022. Bugtrac—A New Im-
proved Bug Tracking System. In 2022 IFEE Delhi Section Con-
ference (DELCON). IEEE, 1-T7.

Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. 2016.
Waterfall: An incremental approach for repairing record-replay
tests of web applications. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering. 751-762.

Milad Hanna, Amal Elsayed Aboutabl, and Mostafa-Sami M

Mostafa. 2018. Automated software testing framework for web
applications. International Journal of Applied Engineering Re-

search 13, 11 (2018), 9758-9767.

Page 11 of 12

[32]

[37]

[38]

[39]

[40]

[47]

[50]

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

Han Huang, Fangqing Liu, Zhongming Yang, and Zhifeng Hao.
2018. Automated Test Ca,se Generation Based on Differential
Evolution With Relationship Matrix for iFogSim Toolkit. IEFFE
Transactions on Industrial Informatics 14, 11 (2018), 5005-5016.
https://doi.org/10.1109/T11.2018.2856881

Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020.
Causal testing: understanding defects’ root causes. In Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering. 87-99.

Katalon. 2022. Simplify Web, API, Mobile, Desktop Automated
Tests. https://katalon.com/. Accessed: 2022-07-05.

Jung-Hyun Kwon, In-Young Ko, and Gregg Rothermel. 2018. Pri-
oritizing browser environments for web application test execution.
In Proceedings of the 40th International Conference on Software
Engineering. 468—-479.

Mariam Lahami, Moez Krichen, and Roobaea Alroobaea. 2019.
TEPaaS: test execution platform as-a-service applied in the con-
text of e-health. International Journal of Autonomous and
Adaptive Communications Systems 12, 3 (2019), 264—-283.
Mykhailo Lasynskyi and Janusz Sosnowski. 2021. Extending the
Space of Software Test Monitoring: Practical Experience. IEFFE
Access 9 (2021), 166166-166183.

Stanislav Levin and Amiram Yehudai. 2017. The co-evolution
of test maintenance and code maintenance through the lens of
fine-grained semantic changes. In 2017 IEEFE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE,
35-46.

Leonardo Mariani, Mauro Pezze, and Daniele Zuddas. 2018. Au-
gusto: Exploiting popular functionalities for the generation of
semantic gui tests with oracles. In Proceedings of the 40th Inter-
national Conference on Software Engineering. 280-290.
Shouvick Mondal, Denini Silva, and Marcelo d’Amorim. 2021.
Soundy Automated Parallelization of Test Execution. In 2021
IFEFE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 309-319.

Vu Nguyen and Bach Le. 2021. Rltcp: A reinforcement learning ap-
proach to prioritizing automated user interface tests. Information
and Software Technology 136 (2021), 106574.

Ryan W Proud, Jeremy J Hart, and Richard B Mrozinski. 2003.
Methods for determining the level of autonomy to design into a
human spaceflight vehicle: a function specific approach. Tech-
nical Report. National Aeronautics and Space Administration
Houston T'X Lyndon B Johnson

Nikhil Rathod and Anil Surve. 2015. Test orchestration a frame-
work for continuous integration and continuous deployment. In
2015 international conference on pervasive computing (ICPC).
IEEE, 1-5.

Stuart Reid. 2013. ISO/IEC/IEEE 29119. (2013).

Victor Riley. 1989. A general model of mixed-initiative human-
machine systems. In Proceedings of the Human Factors Society
Annual Meeting, Vol. 33. Sage Publications Sage CA: Los Angeles,
CA, 124-128.

Sina Shamshiri, José Miguel Rojas, Juan Pablo Galeotti, Neil
Walkinshaw, and Gordon Fraser. 2018. How do automatically gen-
erated unit tests influence software maintenance?. In 2018 IEEE
11th International Conference on Software Testing, Verification
and Validation (ICST). IEEE, 250-261.

Natalia Silvis-Cividjian, Marc Went, Robert Jansma, Viktor
Bonev, and Emil Apostolov. 2021. Good Bug Hunting: Inspir-
ing and Motivating Software Testing Novices. In Proceedings of
the 26th ACM Conference on Innovation and Technology in
Computer Science FEducation V. 1. 171-177.

Smartbear. 2021. Sixz Stages from Manual to Autonomous Test-
ing. https://smartbear.com /resources/ebooks/six-stages-from-
manual-to-autonomous-testing/

Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten
Mossige. 2017. Reinforcement learning for automatic test case
prioritization and selection in continuous integration. In Proceed-
ings of the 26th ACM SIGSOF'T International Symposium on
Software Testing and Analysis. 12—-22.

Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018.
Visual web test repair. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference
and Sympositum on the Foundations of Software Engineering.
503-514.

Panagiotis Stratis and Ajitha Rajan. 2018. Speeding up test execu-
tion with increased cache locality. Software Testing, Verification

@ katalon.com

Katalon

ASE '22, September 26 — October 1, 2022, Ann Arbor, Michigan, USA

[52]
[53]

|54]
[55]

[56]

[57]

[58]

[59]

[60]

and Reliability 28, 5 (2018), el671.

Uipath Test Suite. 2022. UiPath Test Suite, 2022. https://docs.
uipath.com /test-suit/. Accessed: 2022-07-05.

Intelligent Test Automation For Agile Teams. 2022. Mabl. https:
//www.mabl.com/. Accessed: 2022-07-05.

Test.Ai. 2022. test.ai. https://test.ai/. Accessed: 2022-07-05.
Automated Functional Testing Software Testing Tool Testim.io.
2022. Al-driven E2E automation with code-like flexibility for
your most resilient tests. https://www.testim.io/. Accessed:
2022-07-05.

Suresh Thummalapenta, K Vasanta Lakshmi, Saurabh Sinha,
Nishant Sinha, and Satish Chandra. 2013. Guided test generation
for web applications. In 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 162-171.

2022 Tricentis. 2022. Tricentis Tosca: Intelligent Test Automa-
tion. https://www.tricentis.com/products/automate-continuous-
testing-tosca/. Accessed: 2022-07-05.

Marialena Vagia, Aksel A Transeth, and Sigurd A Fjerdingen.
2016. A literature review on the levels of automation during the
years. What are the different taxonomies that have been proposed?
Applied ergonomics 53 (2016), 190-202.

Tanja E. J. Vos, Pekka Aho, Fernando Pastor Ricos, Olivia
Rodriguez-Valdes, and Ad Mulders. 2021. testar scriptless testing
through graphical user interface. Software Testing, Verification
and Reliability 31, 3 (April 2021). https://doi.org/10.1002/stvr.
1771

Benedikt Walter, Maximilian Schilling, Marco Piechotta, and
Stephan Rudolph. 2018. Improving Test Execution Efficiency
Through Clustering and Reordering of Independent Test Steps. In

Page 12 of 12

[61]

62)]

[63]

[64]

[65)]

[66]

2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 363-373.

Chunhui Wang, Fabrizio Pastore, Arda Goknil, and Lionel Briand.
2020. Automatic Generation of Acceptance Test Cases from Use
Case Specifications: an NLP-based Approach. IEEE Transactions
on Software Engineering (2020), 1-1. https://doi.org/10.1109/
TSE.2020.2998503

Chunhui Wang, Fabrizio Pastore, Arda Goknil, and Lionel Briand.
2020. Automatic generation of acceptance test cases from use
case specifications: an nlp-based approach. IEFEFE Transactions
on Software Engineering (2020).

Chunhui Wang, Fabrizio Pastore, Arda Goknil, Lionel Briand,
and Zohaib Igbal. 2015. Automatic generation of system test
cases from use case specifications. In Proceedings of the 2015
international symposium on software testing and analysis. 385—
396.

Tao Xie. 2006. Improving effectiveness of automated software
testing in the absence of specifications. In 2006 22nd IFEEE
International Conference on Software Maintenance. IEEE, 355—
359.

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao,
and Yang Liu. 2021. Automatic Web Testing Using Curitosity-
Driven Reinforcement Learning. IEEE Press, 423-435. https:
//doi.org/10.1109/ICSE43902.2021.00048

Celal Ziftci and Diego Cavalcanti. 2020. De-flake your tests: Auto-
matically locating root causes of flaky tests in code at google. In
2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 736-745.

@ katalon.com

